PhD Research Proposal - Visualising
Software Corpus Analysis

Craig Anslow
School of Mathematics, Statistics and Computer Science
Victoria University of Wellington
Email: craig@mcs.vuw.ac.nz

1 Summary

Despite the spread of software development and software usage, we have
almost no dependable data on how software is actually written in prac-
tice. Understanding the shape of existing software is an important step to
understanding what good software looks like.

Our proposal is to undertake quantitative studies of the way software
is actually written in practice and evolved over time by collecting large
corpora of software in object-oriented and aspect-oriented programming
languages. We will then create tools to produce visualisations of the struc-
ture and behaviour of the software using visualisation techniques to char-
acterize each language’s characteristic patterns of usage and frequency. In
other disciplines, e.g. applied linguistics [12], this kind of approach is well
established.

Our proposed kind of corpus analysis will expose how programmers
actually use languages, what features of languages are used, and better
inform programming pedagogy, software language design, and software
understanding. A key observation leading to this proposal is that software
that could comprise such corpora have become available for study only
in the last decade. One source of corpora will be free and open-source
software (FOSS) that is freely accessible over the Internet.

2 Specific Objectives of Research

Our objectives are as follows:

We want to expose how programmers actually write object-oriented
software, use object-oriented languages, what features of languages
are used, and how software evolves over time. The software corpus
analysis will help to better inform programming pedagogy, software
language design, and understand software.

We aim to produce tools that can create effective visualisations of
software to help determine the quality of software for maintenance
purposes. Software maintenance is reported to be about 70% of the
total cost of a software product [3, 24]. Understanding what causes
these costs is an ongoing research problem in software engineering.
Examining existing software to determine where the costs are is a
good idea.

We aim to analyse object-oriented programs, design patterns, and
aspects from the software corpus using software visualisation tech-
niques [20, 19]. Software visualisation [10, 25, 29, 7] is the use of the
crafts of typography, graphic design, animation, and cinematogra-
phy with modern human-computer interaction and computer graph-
ics technology to facilitate both the human understanding and effec-
tive use of computer software.

We want to see what effect design patterns [11, 27] have in object-
oriented software development. Using design patterns can help speed
up the software development process by providing tested, proven
development paradigms. However if patterns are used inaccurately
this can lead to inefficient solutions and incorrect implementations,
hence requiring majoring refactoring.

We want to see how applicable Aspect Oriented Programming (AOP)
[17, 18, 13, 6] is used for the development of object-oriented soft-
ware. AOP attempts to aid programmers in the separation of con-
cerns, specifically crosscutting concerns, as an advance in modulari-
sation and to reduce costs in the software development process. AOP
does so using a combination of language changes, environment, and

methodology. However if there are few opportunities where AOP is
applicable then the possible benefits of AOP are likely to be limited.

3 Related Work

Some work related to understanding software, and visualising software
corpora, design patterns, and aspects include:

* The Lego Hypothesis [23, 26] says that software can be put together
like Lego out of small interchangeable components. Software con-
structed according to this theory should show certain kinds of struc-
ture: components should be small and should only refer to a small
number of closely related components. An in-depth study of the
structure of Java programs collected 56 applications of varying sizes
and measured their key structural attributes [1]. They found evi-
dence that some relationships follow power-laws, while others do
not.

e Noble and Biddle [21, 22] have used information visualisation tech-
niques [5, 2, 28] to investigate the layouts and programming style of
over 1,000 Nord Modular programs. They found that although mod-
ules could be positioned freely within a program, particular types of
modules were generally found in stereotypical locations.

¢ Jerding [14] has looked at visualising design patterns in the execu-
tion of object oriented programs, while others have looked at visual-
ising design patterns using UML [8], 3D [4] and web services [9].

¢ Khaled et al. [16] have used Aspect] to collect program monitoring
information for visualising UML sequence diagrams of running pro-
grams and algorithm animations of sorting algorithms. They also
created domain specific visualisations for a library system. Other
work has looked at using AOP and Eclipse to help people learn object-
oriented programming [15].

4 Research Methodology

1.

Literature review on how other disciplines do corpus analysis, ex-
isting software corpus analysis, techniques for visualising software,
open source software, and studies on how software is written.

. Collect appropriate data from open source software repositories such

as SourceForge.net, Free Software Foundation, and the Apache Open
Source Foundation.

. Compare the literature on how to write software versus how soft-

ware is actually written. Identify the common features and differ-
ences between the theoretical and practitioner approaches.

Identify the problems and opportunities that exist with the way soft-
ware is actually written and evolved versus the many methodolo-
gies, patterns and standards for designing and programming soft-
ware.

. Develop prototype tools to create visualisations of the structure and

behaviour of the software in the corpus.

. Evaluate the tools for creating software visualisations and the visu-

alisations produced from the tools.

Analysis of the software corpus and visualisations. Characterize
each language’s characteristic patterns of usage. Identify the com-
mon features and differences between the languages. Identify and
document how design patterns and aspects have been used.

. Discussion of the results.

. Report on the results by writing a thesis.

5 Milestones and Expected Timelines
Activity Month Year
Literature Review March-September 2008
Collect Data June-November
Full PhD Proposal November-December
PhD Proposal Seminar February 2009
Design of visualisation system | March-April
Implementation of system April-September
Evaluate and test system September-October
Create visualisations October-December
Analysis of results February-March 2010
Write up thesis April-September
Draft 1 Thesis October
Draft 2 Thesis December
Final Thesis January 2011
Submit Thesis February
Thesis Seminar March

References

[1]

2]

[3]

[4]

Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden
Smith, Matt Visser, Hayden Melton, and Ewan Tempero. Under-
standing the shape of java software. In OOPSLA ‘06: Proceedings
of the 21st ACM SIGPLAN conference on Object-oriented Programming,
Languages, Systems and Applications. ACM Press, October 2006.

Ben Shneiderman Benjamin B. Bederson, editor. The Craft of Informa-
tion Visualization: Readings and Reflections. Morgan Kaufmann, 2003.

Allen H. Dutoit Bernd Bruegge. Object-Oriented Software Engineering:
Using UML, Patterns and Java,. Prentice Hall, 2003.

Michael Callaghan and Heiko Hirschmuller. 3-d visualisation of de-
sign patterns and java programs in computer science education. In
ITiCSE "98: Proceedings of the 6th annual conference on the teaching of

computing and the 3rd annual conference on Integrating technology into
computer science education, pages 37-40, New York, NY, USA, 1998.
ACM Press.

[5] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings
in information visualization: using vision to think. Morgan Kaufmann
Publishers Inc., 1999.

[6] Siobhan Clarke and Elisa Baniassad. Aspect-Oriented Analysis and De-
sign. Addison-Wesley Professional, 2005.

[7] Stephan Diehl. Revised Lectures on Software Visualization, International
Seminar. Springer-Verlag, 2002.

[8] J. Dong and S. Yang. Visualizing design patterns with a uml pro-
tile. In Proceedings of the IEEE Symposium on Human Centric Computing
Languages and Environments, pages 123-125, Auckland, New Zealand,
2003. IEEE Computer Society Press.

[9] Jing Dong, Sheng Yang, and Kang Zhang. Visdp: A web service for
visualizing design patterns on demand. In ITCC "05: Proceedings of the
International Conference on Information Technology: Coding and Comput-
ing (ITCC’05) - Volume 11, pages 385-391, Washington, DC, USA, 2005.
IEEE Computer Society.

[10] Peter Eades and Kang Zhang. Software Visualisation, volume 7 of Soft-
ware Engineering and Knowledge Engineering. World Scientific, 1996.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[12] Susan Hunston. Corpora in Applied Linguistics. Cambridge University
Press, 2002.

[13] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development
with Use Cases (Addison-Wesley Object Technology Series). Addison-
Wesley Professional, 2004.

[14] Dean E Jerding. Visualizing patterns in the execution of object-
oriented programs. In CHI "96: Conference companion on Human factors

[15]

[16]

[17]

[18]

[19]

[20]

[21]

in computing systems, pages 47-48, New York, NY, USA, 1996. ACM
Press.

Rilla Khaled, Anna Maria Luxton, James Noble, Leo Ferres, Judy
Brown, and Robert Biddle. Visualisation for learning oop, using aop
and eclipse. In OOPSLA '04: Companion to the 19th annual ACM SIG-
PLAN conference on Object-oriented programming systems, languages, and
applications, pages 178-179, New York, NY, USA, 2004. ACM Press.

Rilla Khaled, James Noble, and Robert Biddle. Inspectj: program
monitoring for visualisation using aspectj. In ACSC "03: Proceedings of
the twenty-sixth Australasian conference on Computer science, pages 359—
368, Darlinghurst, Australia, Australia, 2003. Australian Computer
Society, Inc.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Aksit and Satoshi Matsuoka, ed-
itors, Proceedings European Conference on Object-Oriented Programming.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

Ramnivas Laddad. Aspect] in Action: Practical Aspect-Oriented Pro-
gramming. Manning Publications Co., Greenwich, CT, USA, 2003.

Stuart Marshall, Kirk Jackson, Craig Anslow, and Robert Biddle. As-
pects to visualising reusable components. In Proceedings of the Aus-
tralian Symposium on Information visualisation, pages 81-88. Australian
Computer Society, Inc., 2003.

Stuart Marshall, Kirk Jackson, Robert Biddle, Michael McGavin,
Ewan Tempero, and Matthew Duignan. Visualising reusable software
over the web. In Proceedings of the Australian Symposium on Information
visualisation, pages 103-111. Australian Computer Society, Inc., 2001.

James Noble and Robert Biddle. Visualising 1,051 visual programs
module choice and layout in the nord modular patch language. In
APVis '01: Proceedings of the 2001 Asia-Pacific symposium on Information
visualisation, pages 121-127, Darlinghurst, Australia, Australia, 2001.
Australian Computer Society, Inc.

[22] James Noble and Robert Biddle. Program visualisation for visual pro-
grams. In AUIC "02: Proceedings of the Third Australasian conference on
User interfaces, pages 29-38, Darlinghurst, Australia, Australia, 2002.
Australian Computer Society, Inc.

[23] Alex Potanin, James Noble, Marcus Frean, and Robert Biddle. Scale-
free geometry in oo programs. Commun. ACM, 48(5):99-103, 2005.

[24] Roger S Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 2004.

[25] John T. Stasko, Marc H. Brown, and Blaine A. Price. Software Visual-
ization. MIT Press, 1997.

[26] C. Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 1998.

[27] John Vlissides. Pattern Hatching: Design Patterns Applied. Addison-
Wesley, 1998.

[28] Colin Ware. Information Visualization: Perception for Design. Morgan
Kaufmann, 2000.

[29] Kang Zhang. Software Visualization: From Theory to Practice. Kluwer
Academic Publishers, 2003.

